Potential Applications of Fibrillated Nanocellulose for a Sustainable Textile Coating Technology

Nanofibrillated cellulose (NFC), is an engineered 1D nanomaterial that can be produced from abundantly found natural cellulose sources. Having a very high specific surface area (above 500 m2/g), thixotropic (shear thinning) behavior and reactive structural side groups (cellulosic hydroxyl groups) make NFC a perfect binding material for functional coatings. Cylindrical fiber geometry in NFC facilitates constructing stable ultrahydrophobic and omniphobic coatings on textiles [1]. This result in formation of hierarchical coatings (from submicrometer to nanometer range) at a broad range of length scales.

NFC promotes adhesion of the functional material to fabric surface by acting as a binder, ensuring higher fixation and retention. Based on this concept, our research team has studied two major applications of NFC in textiles,

1). Properties of NFC functional coatings 2). NFC based novel environmentally sound textile dyeing technique for the cotton industry.

We have investigated the effectiveness of NFC as a binder and properties of NFC coatings in various textile applications.

With phase changing materials (PCM) for thermal regulating textiles.
With phase changing materials (PCM) for thermal regulating textiles.
As an efficient size exclusion textile filter
For durable and launderable conductive coatings, NFC improves adhesion of AgNW wires on the fabrics.

As a conformal coating on different textiles such as cotton, nylon, and blended fabrics.

Using NFC as a carrier for textile dyes led to developing a novel dyeing technique. For the past seven years, the UGA-team has developed NFC based sustainable and industrially applicable textile dyeing technology which promises more than 80% dye fixation and excellent dye performance [2]. Furthermore, the life cycle analysis of this new dyeing technique also shows this process utilizes less energy and has a lower carbon footprint compared to the conventional dyeing method. Most importantly, this technology consumes ten times lower quantity of water and dye auxiliaries compared to the exhaust-dyeing method. We are currently in the phase of optimizing this research, concerning macro and micro business aspect of the current textile industry. Based on the recent research updates, we have achieved following milestones in NFC based dyeing technology.

  • Dyeing of diversify textiles, such as cotton, nylon, polyester and blended textiles.
  • Optimization for batch or continuous dyeing process using different deposition methods such as knife-coating, spraying, and printing.
  • Compatibility of NFC with different dyes such as reactive, indigo, sulfur and vat dyes.
  • Dyeing with monochromatic reactive dye color systems (red, blue, black and yellow) and trichromatic color shades (e.g. brown shade).

As per our new findings, dye performances (fixation, colorfastness, and retention) of NFC dyeing can be further enhanced from chemical crosslinking post-treatments that increase the adhesion between NFC and fabric surfaces.

We have studies in progress to elevate fabric comfort and texture (such as stiffness, air permeability, and fire-retardance) to meet consumer needs.

EFERENCES

[1]. I. Usov, G. Nyström, J. Adamcik, S. Handschin, C. Schütz, A. Fall, L. Bergström and R. Mezzenga, “Understanding nanocellulose chirality and structure–properties relationship at the single fibril level,” Nature Communications, no. 7564, 2015.

[2]. Kim, Y., et al., “Environmentally sound textile dyeing technology with nanofibrillated cellulose”. Green Chemistry, 19(17): p. 4031-4035, 2017.

 ACKNOWLEDGMENT

Cotton Incorporated, The NATO Science for Peace and Security Program, Walmart Manufacturing Innovation Fund, and The Elsevier Foundation.

 

Read More

Precision Application Technology for Textile Finishing

This presentation will highlight the adaptation of precision spray technology from a 35-year history in the printing industry to effective use in textile finishing. Through cooperation with textile industry leaders, OEM machine builders and chemistry suppliers, print spray dampening systems have been re-engineered for the purpose of applying softeners, water repellents, other chemistries and remoistening applications and is now in deployed on over 40 stenters in the Americas and Europe. The precision spray systems are providing remarkable reductions in chemistry, water and energy requirements while also improving production capacities. A brief history, application examples and future advancements of the technology will be presented.

Read More

AATCC Test Method 100 (TM 100)

AATCC Test Method 100 (TM 100) is one of a number of standard test methods commonly used for quantitative assessment of antimicrobial textiles performance. However, as currently written the method allows for a number of steps to be conducted with several options and can be problematic. Options for the number of swatches and inoculum carrier (nutritive vs non-nutritive) were hypothesized to be primary drivers for variability. The study described here attempted to identify sources of inter-laboratory variability and consisted of two parts: 1) four testing laboratories conducted TM 100 using their in-house method while tracking parameters such as inoculum carrier, number of swatches, incubation conditions and enumeration methods; and 2) conducting TM 100 with certain steps specified (i.e., single swatch, dilute nutrient conditions), while tracking other test parameters. Log reductions were determined and correlated with tracked parameters to identify variability. It was shown that specifying the number of swatches and inoculum carrier did not eliminate variability, as these parameters were not alone responsible for the outcome. Log reduction profiles were similar regardless of whether the in-house or single swatch methods were used. Many parameters such as inoculum prep, swatch incubation conditions, cell recovery, and enumeration methods were done differently and assumed to not affect the outcome. Additional systematic examination of these parameters are needed to determine their role in causing inter-laboratory variability.

Read More

Building The Bridge For A Stronger US Supply Chain

SEAMS: “Building The Bridge For A Stronger US Supply Chain”

Reshoring is happening within the US Sewn Products industry.  But, there are still many obstacles to overcome for the industry to experience significant growth.  During this multifaceted presentation, Will Duncan will share his perspective regarding the current state of the Made in the USA movement and how the SEAMS Association is “BUILDING THE BRIDGE FOR A STRONGER US SUPPLY CHAIN”.  Topics addressed are advancements in automation, the need for extensive workforce development, sourcing perspective of brands and retailers, the need for greater supply chain collaboration, micro-factories, and his vision of the “Modern Model Sewing Factory”. 

 

Read More

Fundamentals of Wrinkle Free Finishing & Recent Innovations

Cotton Incorporated: “Fundamentals of Wrinkle Free Finishing
& Recent Innovations”

This presentation will cover many aspects of wrinkle resistant finishing. It will begin with a short history of wrinkle resistant finishing, followed by causes and prevention of wrinkles. Durable press finish applications and chemistries will be covered. Common tests and expectations for wrinkle resistant fabrics/garments will be reviewed. Lastly, some recent durable press innovations will be discussed.

 

Read More

Advanced Thermal Regulation Technology

INCA Technologies: “Advanced Thermal Regulation Technology”

This presentation will review Solar Off-Loading Technology® (SOLT). What is SOLT?

How does it work? The implications for the market place for SOLT will be discussed. Going beyond SOLT what is the next phase? And lastly, independent confirmation of performance for SOLT will be reviewed.

Read More

Plasma Technology for Advanced Functional Finishing

Plasma treatment is a novel method for processing and finishing materials with significant cost and environmental benefits.   Plasma, the fourth state of matter, is created when energy is added to gas molecules causing them to excite and dissociate into charged particles.  These charged particles can be used to directly modify the surface of materials or cause chemical reactions.  Plasma treatment can be used to completely replace the traditional pad-dry-cure method of finishing.  Unlike conventional methods of finishing, plasma does not require an oven or heat and no waste-water is produced.  This makes plasma treatment an environmentally-friendly alternative that can dramatically change conventional methods of finishing throughout the industry.

Read More

Microban® Scentry® Revive A New Body Odor Control Technology or Textiles

New body odor test methods are developed and standardized at Microban for textile odor control technology performance evaluation.  These methods are lab-based method. They are quantitative and reproducible. They are also easy to run and quick to get result out.  They correlate well with real world wearing study. With the help of these newly developed odor control test methods, we have developed a new odor control technology for textile body odor control application.  Test results show that Revive performs well with the newly developed lab test methods.

Read More